Antivirus software

Many users install antivirus software that can detect and eliminate known viruses when the computer attempts to download or run the executable (which may be distributed as an email attachment, or on USB flash drives, for example). Some antivirus software blocks known malicious web sites that attempt to install malware. Antivirus software does not change the underlying capability of hosts to transmit viruses. Users must update their software regularly to patch security vulnerabilities ("holes"). Antivirus software also needs to be regularly updated in order to recognize the latest threats. The German AV-TEST Institute publishes evaluations of antivirus software for Windows and Android.

Examples of Microsoft Windows anti virus and anti-malware software include the optional Microsoft Security Essentials[40] (for Windows XP, Vista and Windows 7) for real-time protection, the Windows Malicious Software Removal Tool (now included with Windows (Security) Updates on "Patch Tuesday", the second Tuesday of each month), and Windows Defender (an optional download in the case of Windows XP). Additionally, several capable antivirus software programs are available for free download from the Internet (usually restricted to non-commercial use). Some such free programs are almost as good as commercial competitors. Common security vulnerabilities are assigned CVE IDs and listed in the US National Vulnerability Database. Secunia PSI is an example of software, free for personal use, that will check a PC for vulnerable out-of-date software, and attempt to update it. Ransomware and phishing scam alerts appear as press releases on the Internet Crime Complaint Center noticeboard.

Other commonly used preventative measures include timely operating system updates, software updates, careful Internet browsing, and installation of only trusted software.

There are two common methods that an antivirus software application uses to detect viruses, as described in the antivirus software article. The first, and by far the most common method of virus detection is using a list of virus signature definitions. This works by examining the content of the computer's memory (its RAM, and boot sectors) and the files stored on fixed or removable drives (hard drives, floppy drives, or USB flash drives), and comparing those files against a database of known virus "signatures". Virus signatures are just strings of code that are used to identify individual viruses; for each virus, the anti-virus designer tries to choose a unique signature string that will not be found in a legitimate program. Different anti-virus programs use different "signatures" to identify viruses. The disadvantage of this detection method is that users are only protected from viruses that are detected by signatures in their most recent virus definition update, and not protected from new viruses (see "zero-day attack").

A second method to find viruses is to use a heuristic algorithm based on common virus behaviors. This method has the ability to detect new viruses for which anti-virus security firms have yet to define a "signature", but it also gives rise to more false positives than using signatures. False positives can be disruptive, especially in a commercial environment.
Recovery strategies and methods

One can also reduce the damage done by viruses by making regular backups of data (and the operating systems) on different media, that are either kept unconnected to the system (most of the time), read-only or not accessible for other reasons, such as using different file systems. This way, if data is lost through a virus, one can start again using the backup (which will hopefully be recent).

If a backup session on optical media like CD and DVD is closed, it becomes read-only and can no longer be affected by a virus (so long as a virus or infected file was not copied onto the CD/DVD). Likewise, an operating system on a bootable CD can be used to start the computer if the installed operating systems become unusable. Backups on removable media must be carefully inspected before restoration. The Gammima virus, for example, propagates via removable flash drives.
Virus removal

Many websites run by antivirus software companies provide free online virus scanning, with limited cleaning facilities (the purpose of the sites is to sell anti-virus products). Some websites—like Google subsidiary VirusTotal.com—allow users to upload one or more suspicious files to be scanned and checked by one or more antivirus programs in one operation. Additionally, several capable antivirus software programs are available for free download from the Internet (usually restricted to non-commercial use). Microsoft offers an optional free antivirus utility called Microsoft Security Essentials, a Windows Malicious Software Removal Tool that is updated as part of the regular Windows update regime, and an older optional anti-malware (malware removal) tool Windows Defender that has been upgraded to an antivirus product in Windows 8.

Some viruses disable System Restore and other important Windows tools such as Task Manager and Command Prompt. An example of a virus that does this is CiaDoor. Many such viruses can be removed by rebooting the computer, entering Windows safe mode with networking, and then using system tools or Microsoft Safety Scanner. System Restore on Windows Me, Windows XP, Windows Vista and Windows 7 can restore the registry and critical system files to a previous checkpoint. Often a virus will cause a system to hang, and a subsequent hard reboot will render a system restore point from the same day corrupt. Restore points from previous days should work provided the virus is not designed to corrupt the restore files and does not exist in previous restore points.By iTal Soft

Firewall

In computing, a firewall is a software or hardware-based network security system that controls the incoming and outgoing network traffic by analyzing the data packets and determining whether they should be allowed through or not, based on a rule set. A firewall establishes a barrier between a trusted, secure internal network and another network (e.g., the Internet) that is not assumed to be secure and trusted.

Many personal computer operating systems include software-based firewalls to protect against threats from the public Internet. Many routers that pass data between networks contain firewall components and, conversely, many firewalls can perform basic routing functions.By iTal Soft

Mydoom

Mydoom, also known as W32.MyDoom@mm, Novarg, Mimail.R and Shimgapi is a computer worm affecting Microsoft Windows. It was first sighted on 26 January 2004. It became the fastest-spreading e-mail worm ever (as of January 2004), exceeding previous records set by the Sobig worm and ILOVEYOU.

Mydoom appears to have been commissioned by e-mail spammers so as to send junk e-mail through infected computers. The worm contains the text message "andy; I'm just doing my job, nothing personal, sorry," leading many to believe that the worm's creator was paid. Early on, several security firms expressed their belief that the worm originated from a programmer in Russia. The actual author of the worm is unknown.

Speculative early coverage held that the sole purpose of the worm was to perpetrate a distributed denial-of-service attack against SCO Group. 25 percent of Mydoom.A-infected hosts targeted www.sco.com with a flood of traffic. Trade press conjecture, spurred on by SCO Group's own claims, held that this meant the worm was created by a Linux or open source supporter in retaliation for SCO Group's controversial legal actions and public statements against Linux. This theory was rejected immediately by security researchers. Since then, it has been likewise rejected by law enforcement agents investigating the virus, who attribute it to organized online crime gangs.

Initial analysis of Mydoom suggested that it was a variant of the Mimail worm—hence the alternate name Mimail.R—prompting speculation that the same persons were responsible for both worms. Later analyses were less conclusive as to the link between the two worms.

Mydoom was named by Craig Schmugar, an employee of computer security firm McAfee and one of the earliest discoverers of the worm. Schmugar chose the name after noticing the text "mydom" within a line of the program's code. He noted: "It was evident early on that this would be very big. I thought having 'doom' in the name would be appropriate."By iTal Soft

Worms

A computer worm is a standalone malware computer program that replicates itself in order to spread to other computers. Often, it uses a computer network to spread itself, relying on security failures on the target computer to access it. Unlike a computer virus, it does not need to attach itself to an existing program. Worms almost always cause at least some harm to the network, even if only by consuming bandwidth, whereas viruses almost always corrupt or modify files on a targeted computer.


Many worms that have been created are designed only to spread, and do not attempt to change the systems they pass through. However, as the Morris worm and Mydoom showed, even these "payload free" worms can cause major disruption by increasing network traffic and other unintended effects. A "payload" is code in the worm designed to do more than spread the worm–it might delete files on a host system , encrypt files in a cryptoviral extortion attack, or send documents via e-mail. A very common payload for worms is to install a backdoor in the infected computer to allow the creation of a "zombie" computer under control of the worm author. Networks of such machines are often referred to as botnets and are very commonly used by spam senders for sending junk email or to cloak their website's address. Spammers are therefore thought to be a source of funding for the creation of such worms,and the worm writers have been caught selling lists of IP addresses of infected machines.Others try to blackmail companies with threatened DoS attacks.

Backdoors can be exploited by other malware, including worms. Examples include Doomjuice, which can spread using the backdoor opened by Mydoom, and at least one instance of malware taking advantage of the rootkit and backdoor installed by the Sony/BMG DRM software utilized by millions of music CDs prior to late 2005.By iTal Soft


Adware

Adware, or advertising-supported software, is any software package which automatically renders advertisements in order to generate revenue for its author. The advertisements may be in the user interface of the software or on a screen presented to the user during the installation process. The functions may be designed to analyze which Internet sites the user visits and to present advertising pertinent to the types of goods or services featured there. The term is sometimes used to refer to software that displays unwanted advertisements.
By Ital Soft

Anti-spyware programs

Many programmers and some commercial firms have released products dedicated to remove or block spyware. Programs such as PC Tools' Spyware Doctor, Lavasoft's Ad-Aware SE and Patrick Kolla's Spybot - Search & Destroy rapidly gained popularity as tools to remove, and in some cases intercept, spyware programs. On December 16, 2004, Microsoft acquired the GIANT AntiSpyware software, rebranding it as Windows AntiSpyware beta and releasing it as a free download for Genuine Windows XP and Windows 2003 users. (In 2006 it was re-named Windows Defender).

Major anti-virus firms such as Symantec, PC Tools, McAfee and Sophos have also added anti-spyware features to their existing anti-virus products. Early on, anti-virus firms expressed reluctance to add anti-spyware functions, citing lawsuits brought by spyware authors against the authors of web sites and programs which described their products as "spyware". However, recent versions of these major firms' home and business anti-virus products do include anti-spyware functions, albeit treated differently from viruses. Symantec Anti-Virus, for instance, categorizes spyware programs as "extended threats" and now offers real-time protection against these threats.
By Ital Soft

Spyware

Spyware is a software that aids in gathering information about a person or organization without their knowledge and that may send such information to another entity without the consumer's consent, or that asserts control over a computer without the consumer's knowledge

"Spyware" is mostly classified into four types: system monitors,  adware, and tracking cookies. Spyware is mostly used for the purposes such as; tracking and storing internet users' movements on the web; serving up pop-up ads to internet users.

Whenever spyware is used for malicious purposes, its presence is typically hidden from the user and can be difficult to detect. Some spyware, such as keyloggers, may be installed by the owner of a shared, corporate, or public computer intentionally in order to monitor users.

While the term spyware suggests software that monitors a user's computing, the functions of spyware can extend beyond simple monitoring. Spyware can collect almost any type of data, including personal information like Internet surfing habits, user logins, and bank or credit account information. Spyware can also interfere with user control of a computer by installing additional software or redirecting Web browsers. Some spyware can change computer settings, which can result in slow Internet connection speeds, un-authorized changes in browser settings, or changes to software settings.

Sometimes, spyware is included along with genuine software, and may come from a malicious website. In response to the emergence of spyware, a small industry has sprung up dealing in anti-spyware software. Running anti-spyware software has become a widely recognized element of computer security practices for computers, especially those running Microsoft Windows. A number of jurisdictions have passed anti-spyware laws, which usually target any software that is surreptitiously installed to control a user's computer.By iTal Soft
                             

Viruses and the Internet

Before computer networks became widespread, most viruses spread on removable media, particularly floppy disks. In the early days of the personal computer, many users regularly exchanged information and programs on floppies. Some viruses spread by infecting programs stored on these disks, while others installed themselves into the disk boot sector, ensuring that they would be run when the user booted the computer from the disk, usually inadvertently. Personal computers of the era would attempt to boot first from a floppy if one had been left in the drive. Until floppy disks fell out of use, this was the most successful infection strategy and boot sector viruses were the most common in the wild for many years.

Traditional computer viruses emerged in the 1980s, driven by the spread of personal computers and the resultant increase in BBS, modem use, and software sharing. Bulletin board–driven software sharing contributed directly to the spread of Trojan horse programs, and viruses were written to infect popularly traded software. Shareware and bootleg software were equally common vectors for viruses on BBSs.[citation needed] Viruses can increase their chances of spreading to other computers by infecting files on a network file system or a file system that is accessed by other computers.

Macro viruses have become common since the mid-1990s. Most of these viruses are written in the scripting languages for Microsoft programs such as Word and Excel and spread throughout Microsoft Office by infecting documents and spreadsheets. Since Word and Excel were also available for Mac OS, most could also spread to Macintosh computers. Although most of these viruses did not have the ability to send infected email messages, those viruses which did take advantage of the Microsoft Outlook COM interface.

Some old versions of Microsoft Word allow macros to replicate themselves with additional blank lines. If two macro viruses simultaneously infect a document, the combination of the two, if also self-replicating, can appear as a "mating" of the two and would likely be detected as a virus unique from the "parents".

A virus may also send a web address link as an instant message to all the contacts on an infected machine. If the recipient, thinking the link is from a friend (a trusted source) follows the link to the website, the virus hosted at the site may be able to infect this new computer and continue propagating.

Viruses that spread using cross-site scripting were first reported in 2002, and were academically demonstrated in 2005. There have been multiple instances of the cross-site scripting viruses in the wild, exploiting websites such as MySpace and Yahoo!.By iTal Soft

Computer Virus

A computer virus is a type of malware that, when executed, replicates by inserting copies of itself (possibly modified) into other computer programs, data files, or the boot sector of the hard drive; when this replication succeeds, the affected areas are then said to be "infected". Viruses often perform some type of harmful activity on infected hosts, such as stealing hard disk space or CPU time, accessing private information, corrupting data, displaying political or humorous messages on the user's screen, spamming their contacts, or logging their keystrokes. However, not all viruses carry a destructive payload or attempt to hide themselves—the defining characteristic of viruses is that they are self-replicating computer programs which install themselves without the user's consent.


Virus writers use social engineering and exploit detailed knowledge of security vulnerabilities to gain access to their hosts' computing resources. The vast majority of viruses (over 99%) target systems running Microsoft Windows, employing a variety of mechanisms to infect new hosts, and often using complex anti-detection/stealth strategies to evade antivirus software. Motives for creating viruses can include seeking profit, desire to send a political message, personal amusement, to demonstrate that a vulnerability exists in software, for sabotage and denial of service, or simply because they wish to explore artificial life and evolutionary algorithms.


Computer viruses currently cause billions of dollars worth of economic damage each year, due to causing systems failure, wasting computer resources, corrupting data, increasing maintenance costs, etc. In response, free, open-source anti-virus tools have been developed, and a multi-billion dollar industry of anti-virus software vendors has cropped up, selling virus protection to Windows users. Unfortunately, no currently existing anti-virus software is able to catch all computer viruses (especially new ones); computer security researchers are actively searching for new ways to enable antivirus solutions to more effectively detect emerging viruses, before they have already become widely distributed. By iTal Soft